Introduction	Kant's Synthetic A priori	Visual Reasoning in Mathematics	Conclusion	Outlook in Future Research

Kantian Characterization of Mathematics

Özge Ekin Gün, PhD.

Freie University of Berlin Insitute of Philosophy

23 September 2016

Kantian Characterization of Mathematics

Özge Ekin Gün, PhD.

Introduction	Kant's Synthetic A priori	Visual Reasoning in Mathematics	Conclusion	Outlook in Future Research
000	00		000	000
Outline	:			

- Introduction
- ② Kant's Synthetic A priori
- **③** Visual Reasoning in Mathematics
- Onclusion
- **③** Outlook on Future Research

Introduction ●00	Kant's Synthetic A priori 00	Visual Reasoning in Mathematics		Outlook in Future Research	
Introduction					

Background and Motivation

Dehumanization of mathematics and elimination of intuitions

 Discovery of geometrical or topological monsters → demonstrating unreliability of intuition *Example:* Weierstrass' everywhere continuous but nowhere differentiable function

 \bullet Developments in modern logic \to formalization of mathematics \to insistence on the usage of only sentential formal representations

	00	Visual Reasoning in Mathematics	000		
In the also at the second s					

Introduction

Importance

Visual reasoning in mathematics with respect to Kantian characterization of mathematics

- Objective background for visual reasoning in mathematics
- Visual representations are not only psychological tools or have only heuristic usage
- Validity of Kant's characterization of mathematics as synthetic a priori

	Kant's Synthetic A priori 00	Visual Reasoning in Mathematics	Outlook in Future Research 000
Introdu	iction		

Problem

- Many interpretations of Kantian characterization of mathematics
- Many approaches to visual reasoning in mathematics: computer generated images, epistemological, cognitive and formal

How to make sense of it all?

- Meta-analysis
- Natural link between visualization and Kant's synthetic a priori

	Kant's Synthetic A priori ●0	Visual Reasoning in Mathematics	Conclusion 000	Outlook in Future Research 000
Kant's	Synthetic A r	priori		

Synthetic a priori as a method

- Not primarily truth statements in propositional forms
- Synthetic a priori method in context of justification

Visualization

- External visual representations can be formalized but...
- Visualization remains (exhibiting intuition a priori in pure intuition space)

Introduction 000	Kant's Synthetic A priori 0●	Visual Reasoning in Mathematics	Conclusion 000	
Kant's	Synthetic A r	priori		

Kantian intuitions and visual representations

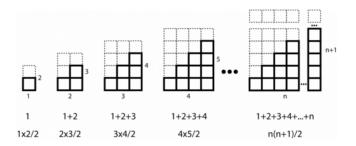
Visual representations are intuitions (Anschauungen) Not only:

- *a* triangle used in an Euclidean proof, drawn on a medium or visualized in mental space
- Venn diagrams

But also:

- ellipsis (...) in 1+2+3+...
- a letter symbol such as "a" representing a general property in a = a (law of identity)

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$



Özge Ekin Gün, PhD.

<ロ> (日) (日) (日) (日) (日)

000	00	000	000	000
1+2+3	$X \perp 4 \perp$		Proo	f by Induction

Let the property P(n) be the equation $1 + 2 + \dots + n = n(n+1)/2$. Show that the property P(n) is true for n = 1. We must show that $1 = \frac{1(1+1)}{2}$. The right hand side of the equation is $\frac{1(1+1)}{2} = \frac{2}{2} = 1$, which is the same as the left hand side. So the property is true for n = 1. Show that for all integers n = k, if P(k) is true, then so is P(k+1). For the induction hypothesis, suppose $1 + 2 + \dots + k = \frac{k(k+1)}{2}$, for some integer $k \ge 1$. From this we must show that $1 + 2 + \dots + (k+1) = \frac{(k+1)(k+2)}{2}$. The left hand side of the equation can be expanded to: $(1 + 2 + \dots + k) + (k + 1)$. Substituting using the induction hypothesis, this is: $\frac{k(k+1)}{2} + (k + 1)$. Finding a common denominator and simplifying,

$$\frac{k(k+1)}{2} + (k+1) = \frac{k(k+1)}{2} + \frac{(k+1) \cdot 2}{2}$$
(1)
= $\frac{(k+1)(k+2)}{2}$ (2)

which is what we were trying to show. QED.

Kantian Characterization of Mathematics

we have:

< ロ > < 同 > < 回 > < 回 >

Introduction	Kant's Synthetic A priori	Visual Reasoning in Mathematics	Conclusion	Outlook in Future Research
000	00	00●	000	000
1+2+3	8+4+			Gauss Way

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-2) + (n-1) + n$$

$$\sum_{i=1}^{n} i = n + (n-1) + (n-2) + \dots + 3 + 2 + 1$$

$$2 * \sum_{i=1}^{n} i = (n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)$$

$$= n (n+1)$$

$$\sum_{i=1}^{n} i = \frac{n (n+1)}{2}$$

Kantian Characterization of Mathematics

Özge Ekin Gün, PhD.

・ロト ・日・・日・・日・ ・日・

	Kant's Synthetic A priori 00	Visual Reasoning in Mathematics	Conclusion ●00	Outlook in Future Research 000
Conclus	sion			

Intuitions, Visual Representations, Mathematics

- There is a process that helps one to look at the general complicated representation in a simplified particular way
- Any representation allowing this process is a visual representation or intuition in Kantian sense

Conclusion					
	Kant's Synthetic A priori 00	Visual Reasoning in Mathematics	Conclusion 0●0	Outlook in Future Research 000	

Mathematical truths and methods

- Although mathematics has infallible mathematical truths immune to empirical overthrown, it is practiced by human beings
- Formal sentential method is not the only way to reach mathematical truths
- Mathematical objects and methods evolve and are revisable

	Kant's Synthetic A priori 00	Visual Reasoning in Mathematics	Conclusion 00●	Outlook in Future Research 000
Conclu	sion			

Intuitions

- Kant's characterization of mathematics can provide an objective background for visual reasoning in mathematics.
- Visual representations are not only psychological tools or have only heuristic usage.
- There is usage of synthetic a priori method in the context of justification in mathematics.
- Visual representations and intuition are indispensable in mathematics.

Deciding what is valid to use in mathematics affects how it is taught and how published media appears

A Klein bottle may be parametrized by the following equations:

$$x = \begin{cases} a \cos(u) (1 + \sin(u)) + r \cos(u) \cos(v) & 0 \le u < \pi \\ a \cos(u) (1 + \sin(u)) + r \cos(v + \pi) & \pi < u \le 2\pi \end{cases}$$
$$y = \begin{cases} b \sin(u) + r \sin(u) \cos(v) & 0 \le u < \pi \\ b \sin(u) & \pi < u \le 2\pi \end{cases}$$
$$z = r \sin(v)$$

where $v \in [0, 2\pi]$, $u \in [0, 2\pi]$, $r = c\left(1 - \frac{\cos(u)}{2}\right)$ and a, b, c are chosen arbitrarily.

http://planetmath.org/kleinbottle

< ≣ > < ≣ >

Introduction	Kant's Synthetic A priori	Visual Reasoning in Mathematics	Conclusion	Outlook in Future Research		
000	00		000	⊙●○		
Outlook in Future Research						

Demanding the usage of only sentential formal methods in such visual era is incomprehensible

https://www.vismath.eu/

	00	Visual Reasoning in Mathematics		000			
Outlook in Future Research							

Theory of Visual Representations:

- Visual thinking as a form of valid reasoning in mathematics
- Visualization can be learned and improved
- Theory of visual representations as a branch of mathematics